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Line defects of a two-component vector order parameter
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Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China

~Received 25 March 1999!

The line density of line defects in terms of a two-component vector order parameter are obtained from the
definition of topological charges of line defects. The spatial structure and bifurcation of line defects in three-
dimensional space are also studied from the topological properties of the two-component vector order param-
eter. The branch conditions for generating, annihilating, colliding, splitting, and merging of line defects are
obtained according to the properties of the two-component vector order parameter itself. It is found that the
velocities of line defects are infinite when they are being annihilated or generated, which is obtained only from
the topological properties of the two-component vector order parameter.@S1063-651X~99!01709-2#

PACS number~s!: 05.70.Ln, 11.27.1d, 41.20.Jb, 47.32.Cc
nd

h

re

on
a
a

ho

ec
ra

th

d

is-

se

.

e
and
his
on
of
pa-

-
III,
tor
ng,
d,
ed in

ter

nd
o-on
I. INTRODUCTION

Topological defects play an important role in understa
ing a variety of problems in physics@1,2#. In particular, there
has been progress in the study of defects associated wit
n-component vector order parameter fieldfW (rW,t) @3–5#. For
the scalar case,n51, the defects are domain walls which a
points for the spatial dimensionalityd51, lines for d52,
planes ford53, etc. More generally, forn5d, one has point
defects; forn5d21, one generates line defects. In additi
to their importance in condensed matter, these systems
also relevant to problems in cosmological structure form
tion. In studying these problems, questions arise as to
one can define quantities like the densities of defect and
associated defect velocity field.

It is interesting to consider an appropriate form for def
densities when expressed in terms of the vector order pa
eter fieldfW (rW,t). This has been carried out by Halperin@6#,
and exploited by Liu and Mazenko@7#: In the casen5d, the
first ingredient is the rather obvious result

(
a

d„rW2rWa~ t !…5d„fW ~rW,t !…UDS f

x D U,
where the second factor on the right-hand side is just
Jacobian of the transformation from the variablefW to rW. This
is combined with the less obvious result

ha5sgnD~f/x!urWa

to give

r~rW,t !5(
a

had„rW2rWa~ t !…5d~fW !D~f/x!. ~1!

In recent work@8#, we showed that this analysis of Eq.~1! is
incomplete, and obtained the densities of point defects
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rectly from the definition of topological charges, and d
cussed what will happen whenD(f/x)50, i.e.,h l is indefi-
nite.

For the topological line density of line defects for the ca
n5d21,

r i~rW,t !5(
a

E ds
dra

i

ds
d„rW2rWa~s,t !…;

in the similar way of obtaining Eq.~1!, the authors of Refs
@6,9# gave

r i~rW,t !5d~fW !Di~f/x!, ~2!

where

Di~f/x!5e i i 1i 2••• i n] i 1
f1] i 2

f2
•••] i n

fn.

In this paper, we will investigate the line density of lin
defects of a two-dimensional vector order parameter,
give a complete topological analysis of the line density. T
paper is organized as follows: In Sec. II, from the definiti
of the topological charge of line defect, the line density
line defects in terms of the two-component vector order
rameter are given by means of thef-mapping topological
current theory@10,8#. The topological bifurcation of line de
fects in three-dimensional space is also given. In Sec.
from the topological properties of the two-component vec
order parameter, the conditions for generating, annihilati
colliding, splitting, and merging line defects are obtaine
and several crucial cases of branch process are discuss
detail. We present our concluding remarks in Sec. IV.

II. SPATIAL STRUCTURE OF LINE DEFECTS

A. Line density of line defects

Let us study a two-component vector order parame
fW (rW,t) at a fixed time, which is denoted asfW (rW), and take a
cross section normal to thez axis with coordinatesx15x and
x25y; the intersection points between the line defects a
the cross section are just the zero points of the tw
component vector order parameterfW , i.e.,
ic
2568 © 1999 The American Physical Society
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f1~x,y!50,

f2~x,y!50. ~3!

If the Jacobian determinant

D~f/x!5 1
2 e jkeab] jf

a]kf
bÞ0, j ,k51,2, ~4!

the solutions of Eqs.~3! are generally expressed as

x5xl , y5yl , l 51,2, . . . ,N, ~5!

which representN zero pointsxW l5(xl ,yl) on this cross sec
tion. e jk and eab are fully antisymmetric tensors, and th
summation is over repeated indices in Eq.~4!.

The topological charge of thel th line defect@or the gen-
eralized winding numberWl of fW at one of zero points
(xl ,yl)# is defined by the Gauss mapn: ]S l→S1 @10#,

Wl5
1

2pE]S l

n* ~eabn
adnb!, na5fa/ifi , ~6!

wheren* is the pullback of the Gauss mapn, and]S l is the
boundary of a neighborhoodS l of xW l . S lùSm5B for Sm is
the neighborhood of another arbitrary zero pointxWm . In to-
pology this means that, when the pointxW covers]S l once,
the unit vectornW will cover S1, or fW covers the correspond
ing regionWl times, which is a topological invariant. Usin
the Stokes’ theorem in the exterior differential form, one c
deduce that

Wl5
1

2pES l

eabe
jk] jn

a]kn
bd2x. ~7!

So it is clear that the topological charge density of line d
fects ~or the topological charges densities! on the cross sec
tion is just

rz5
1

2p
eabe

jk] jn
a]kn

b, j ,k51,2, ~8!

Similarly, we may obtain the topological charge density li
defects on a cross section normal to they axis,

ry5
1

2p
eabe

jk] jn
a]kn

b, j ,k51,3, ~9!

and the topological charge density of line defects on a cr
section normal to thex axis:

rx5
1

2p
eabe

jk] jn
a]kn

b, j ,k52,3. ~10!

The line density of line defects normal to one plane give
topological charge density of line defects on the plane@6#,
and one can constructthe line density of line defectsin three-
dimensional space according to Eqs.~8!, ~9! and ~10!:

r i5 1
2 e i jkeab] jn

a]kn
b, i , j ,k51,2,3, ~11!

where
n

-

ss

e

r15rx , r25ry , r35rz .

Becausee i jk is a fully antisymmetric tensor, it is easy to se
that the divergence of the line density of the line defects
zero,

¹W •rW 5] ir
i50, ~12!

which is the reason that line defects occur on a set of o
dimensional curves that may be either closed loops or infi
curves. Using the same methods in as Ref.@11#, one can
obtain that

r i5d2~fW !Di S f

x D , ~13!

where

Di S f

x D5
1

2
e i jkeab] jf

a]kf
b, i , j ,k51,2,3.

Here one can see that the line density of line defects in te
of the two-component vector order parameter~13! is ob-
tained directly from the definition of topological charge
the line defect~the winding number of zero points!, which is
useful because it avoids the problem of having to specify
position of line defects explicitly, and is more general th
usually considered. From Eq.~13! we see thatrW does not
vanish only at the zero points offW in three-dimensional
space, i.e.,

f1~x,y,z!50, f2~x,y,z!50. ~14!

When

DW S f

x D5FD1S f

x D ,D2S f

x D ,D3S f

x D GÞ0,

the solutions of Eqs.~14! are

x5xl~s!, y5yl~s!, z5zl~s!, l 51,2, . . . ,N,
~15!

which representN line defects Ll( l 51,2, . . . ,N) where
fW (rW)50W in three-dimensional space. The direction of thel th
line defect is determined byDW (f/x) on Ll @11#.

In the theory of thed function offW (rW), one can prove tha
@11#

rW 5(
l 51

N

b lh lE
Ll

ds
drW l

ds
drW ld

3~rW2rW l !, ~16!

where the positive integerb l is called the Hopf index, and
h l561 is the Brouwer degree of mapx→f @11#. One can
find a relation between the Hopf indexb l , the Brouwer de-
greeh l , and the winding numberWl : Wl5b lh l @8#. Let S
be an arbitrary surface, and suppose thatM line defects pass
through it. According to Eq.~13!, one can prove that

E
S
rW •dsW 5(

l 51

M

b lh l , ~17!
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2570 PRE 60YISHI DUAN AND HONG ZHANG
which confirms thatrW represents the line density of line d
fects in space.

Here we see that result~2! obtained by Halperin and Ma
zenko and co-workers is not complete. They only conside
the caseb l51, and did not discuss what will happen whe
DW (f/x)50, i.e., h l is indefinite, which we will discuss in
Sec. II B.

B. Spatial bifurcation of line defects

Solution ~15! of Eqs. ~14! is based on the condition tha

the JacobianDW (f/x)Þ0W. When the condition fails, the
above results~15! will change in some way. It is interestin
to discuss what will happen, and what the correspondenc
physics will be when

DW S f

x D50W ~18!

at some pointsrW l* along Ll . This restrictive condition will
lead to an important fact that the functional relationship
tweenz andx, or z andy, is not unique in the neighborhoo
of rW l* . This fact is easily seen from

dx

dz
5

D1S f

x D
D3S f

x D U
rW
l*

,
dy

dz
5

D2S f

x D
D3S f

x DU
rW
l*

, ~19!

which under Eq.~18! directly shows that the direction of th
integral curve of Eq.~19! is indefinite atrW l* . Therefore, the

very point rW l* is called a bifurcation point of the two
dimensional vector order parameter in three-dimensio
space.

According to thef-mapping topological current theory
the Taylor expansion of the solution of Eqs.~14! in the
neighborhood of the bifurcation pointrW l* can be generally
expressed as@10#

A~x2xl* !212B~x2xl* !~z2zl* !1C~z2zl* !21•••50,

which leads to

AS dx

dzD
2

12B
dx

dz
1C50 ~20!

and

CS dz

dxD
2

12B
dz

dx
1A50. ~21!

The solutions of Eqs.~20! or ~21! give different directions of
the branch curves~zero lines of the two-component vecto
order parameter, i.e., line defects! at the bifurcation point.
There are four important cases.

Case (1) (AÞ0): For D54(B22AC).0, from Eq.~20!,
we obtain two different directions of the line defects in thre
dimensional space,

dx

dzU
1,2

5
2B6AB22AC

A
, ~22!
d

in

-

al

-

which is shown in Fig. 1, where two zero lines intersect w
different directions atrW i* . This shows that two line defect
intersect at the bifurcation point.

Case (2) (AÞ0): For D54(B22AC)50, from Eq.~20!,
we obtain only one direction of the line defects in thre
dimensional space,

dx

dzU
1,2

52
B

A
, ~23!

which includes three important cases according to Fig.
First, two zero lines tangentially contact, i.e., two line d
fects tangentially intersect at the bifurcation point@see Fig.
2~a!#. Second, two zero lines merge into one zero line, i
two line defects merge into one line defect at the bifurcat
point @see Fig. 2~b!#. Finally, one zero line resolves into two
i.e., one line defect splits into two at the bifurcation poi
@see Fig. 2~c!#.

Case (3) (A50,CÞ0): For D54(B22AC)Þ0, from Eq.
~21!, we have

dz

dxU
1,2

5
2B6AB22AC

C
50,2

2B

C
. ~24!

As shown in Fig. 3, there are two important cases:~a! One
zero line resolves into three, i.e., one line defect splits i
three line defects at the bifurcation point@see Fig. 3~a!#. ~b!
Three zero lines merge into one zero line, i.e., three l
defects merge into one at the bifurcation point@see Fig.
3~b!#.

Case (4) (A5C50): Equations ~20! and ~21!, respec-
tively, give

dx

dz
50,

dz

dx
50. ~25!

This case is obvious as in Fig. 4, which is similar to case
The above solutions reveal the spatial bifurcation str

ture of line defects in three-dimensional space. In addition
the intersection of line defects, i.e., two line defects inters

FIG. 1. Bifurcation solution for Eq.~22!: two line defects inter-
sect at the bifurcation point in three-dimensional space.
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FIG. 2. Bifurcation solutions for Eq.~23!: line defects have the
same direction of tangent when they intersect in three-dimensi
space.~a! Two line defects tangentially contact at the bifurcati
point. ~b! Two line defects merge into one line defect at the bifu
cation point.~c! One line defect splits into two line defects at th
bifurcation point.
at the bifurcation point@see Figs. 1 and 2~a!#, splitting and
merging of line defects are also included. When a mu
charged line defect passes through the bifurcation poin
three-dimensional space, it may split into several line defe
along different branch curves@see Figs. 2~c!, 3~a!, and 4~b!#;
moreover, several line defects can merge into one line de
at the bifurcation point@see Figs. 2~b!, 3~b!, and 4~a!#. For
the divergence of the line density of line defects to be z
@Eq. ~12!#, the sum of the topological charges of the final lin
defect~s! must be equal to that of the initial line defect~s! at
the bifurcation point, i.e.,

(
f

b l f
h l f

5(
i

b l i
h l i

~26!

for fixed l.

al

FIG. 3. Two important cases of Eq.~24!. ~a! One line defects
splits into three line defects at the bifurcation point in thre
dimensional space.~b! Three line defects merge into one line defe
at the bifurcation point.
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III. EVOLUTION OF LINE DEFECTS

In Sec. II, we did not consider the motion of line defec
and only discussed the space structure of line defect
three-dimensional space. In this section, we will investig
the evolution of a line defect in (311)-dimensional space
time with coordinatesx15x, x25y, x35z, andx05t.

A. Continuity equation of line density of line defects

From Eq.~11!, we construct a topological tensor curre
of the two-component vector order parameter

Kmy5
1

2p
emnlseab]lna]snb, m,n50,1,2,3,

where

r i5K0i5
1

2p
e0i jkeab] jn

a]kn
b.

FIG. 4. ~a! Three line defects merge into one at the bifurcati
point. ~b! One line defect splits into three line defects at the bif
cation point.
,
in
e

Following thef-mapping topological current theory, it ca
be proved that

Kmy5d2~fW !DmnS f

x D ,

where

Dmn~f/x!5 1
2 emylseab]lfa]sfb.

Considering thatemyls is a fully antisymmetric tensor, we
can prove that

]mKmy50;

that is,

] tr
i1] jK

ji 50, ~27!

which is just the continuity equation satisfied byr i @9#.

B. Motion of line defects on a cross section

When we investigate the movement of line defects, th
exist evolution surfaces formed by the movements of the
defects in (311)-dimensional space-time. For simplicity, le
us take an arbitrary cross section normal to thez axis, i.e.,
(211)-dimensional space-time with coordinatesx15x, x2

5y, andx05t. The intersection lines between the evolutio
surfaces and the cross section are just motion curves of
defects on the cross section~see Fig. 5!. One thing to point
out is that if one takes the cross sections all along the a
the motion properties of the line defects will be given co
pletely.

From the continuity equation satisfied byr i @Eq. ~27!#, we
can give the continuity equation of the line densities of li
defects on this cross section:

] trz1] jK
j50, j 51,2, ~28!

where

rz5K035d2~fW !D0S f

x D ~29!

and

K j5K j 35d2~fW !D j S f

x D , j 51,2, ~30!

-

FIG. 5. S is one cross section normal to thez axis. X(t) is the
intersection line between the evolution surface of a line defect
the cross sectionS, i.e., the movement curve of the line defect o
the cross sectionS.
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where the JacobiansDm(f/x)5 1
2 emyleab]nfa]lfb (m

50,1,2,3).
From Eq. ~29! the line densities of line defects on th

cross section do not vanish only at the zero points of
vector order parameterfW (x,y,t), i.e.,

f1~x,y,t !50, f2~x,y,t !50, ~31!

which determine the positions of line defects. If the Jacob
determinantD0(f/x)Þ0, the solutions of Eqs.~31! are ex-
pressed as

x5xl~ t !, y5yl~ t !, l 51,2, . . . ,N, ~32!

which represent the motion curves of theN zero pointxW l(t)
on the cross section, and which show them moving in
11)-dimensional space-time.

According to Eq.~16!, we obtain that

FIG. 6. ~a! The origin of line defects, i.e., two line defects a
generated at the limit point.~b! Two line defects are annihilated a
the limit point.
e

n

2

rz~x,y,t !5(
l 51

N

b lh ld
2
„xW2xW l~ t !…. ~33!

Following our theory, we can also obtain the velocity of t
l th zero point on the cross section,

yW l5
dxW l

dt
5

DW ~f/x!

D0~f/x!
U

xW l

, DW ~f/x!5„D1~f/x!,D2~f/x!…,

~34!

from which one can identify the zero-point velocity field o
the cross section,

yW~x,y,t !5
DW ~f/x!

D0~f/x!
, ~35!

where it is assumed that the velocity field is used ins
expressions multiplied by the zero points, locating thed
function. The expressions given by Eq.~35! for the velocity
field of the zero points are useful because they avoid
problem of having to specify the positions of the zero poi
explicitly. The positions are implicitly determined by the z
ros of the two-component vector order parameterfW on the
cross section. So the location and the velocity of thel th zero
point are determined by thel th zeroxW l(t) and the vector field
yW (x,y,t) on xW l(t), respectively.

The current densities of the line defects on the cross s
tion can be written in the same form as the current densi
in hydrodynamics:

Ji5(
l 51

N

b lh ld
2
„xW2xW l~ t !…

dxl
i

dt
, i 51,2. ~36!

From Eqs.~30!, ~33!, and ~34!, the current densities can b
written as the concise forms

FIG. 7. Two line defects collide with different directions o
motion at the bifurcation point in (311)-dimensional space-time.
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FIG. 8. Line defects have the same direction of motion in
11)-dimensional space-time.~a! Two line defects collide at the
bifurcation point.~b! Two line defects merge into one line defect
the bifurcation point.~c! One line defect splits into two line defect
at the bifurcation point.
Ji5Ki5d2~fW !Di S f

x D5rzv
i . ~37!

According to Eq.~28!, the topological charges of line defec
on the cross section are conserved,

]rz

]t
1¹W •JW50, ~38!

which is only the topological property of the vector ord
parameter. This is the true reason that the singularity~topo-
logical defect! with a winding numberWÞ0 cannot be re-
moved without tampering with the order parameter at ar
trarily great distances from the singular point, and th
singular configurations with different winding numbers ca
not be transformed into one another by local surgery,
pointed out by Mermin@1#.

C. Generation and annihilation of line defects

Solutions~32! of Eqs.~31! are based on the condition tha
the JacobianD0(f/x)Þ0. It is interesting to discuss wha
will happen and what the correspondence in physics will
when this condition fails. WhenD0(f/x)50, i.e.,h l is in-
definite, it is shown that there exist several crucial cases
branch process. There are two kinds of branch poi
namely, limit points and bifurcation points. Each of the
corresponds to different cases of branch process.

First, we study the case when the zeros of the tw
component vector order parameterfW (x,y,t) include some
limit points. The limit points are determined by Eqs.~31! and

D0S f

x D50, D1S f

x DÞ0 ~39!

or

D0S f

x D50, D2S f

x DÞ0. ~40!

For simplicity, we only consider Eqs.~39!, and denote one o
the limit points as (xW* ,t* ). Taking account of Eqs.~39! and
using the implicit function theorem, we have a unique so
tion of Eqs. ~31! in the neighborhood of the limit poin
(xW* ,t* ),

t5t~x!, y5y~x!, ~41!

with t* 5t(x* ) andy* 5y(x* ). From Eqs.~39!, it is easy to
see

dt

dxU
(xW* ,t* )

50, i.e.,
dx

dtU
(xW* ,t* )

5`. ~42!

Thus, the Taylor expansion of solution~41! in the neighbor-
hood of the limit point (xW* ,t* ) is

t2t* 5
1

2

d2t

~dx!2U
(xW* ,t* )

~x2x* !2. ~43!
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From Eq. ~43! we can obtain the branch solutions of ze
points at the limit point. Ifd2t/(dx)2u(xW* ,t* ).0, we have the
branch solutions fort>t* @Fig. 6~a!#; otherwise, we have the
branch solutions fort<t* @Fig. 6~b!#. The former is related
to the generation of the line defects, and the latter is rela
to the annihilation of the line defects. Since the topologi
charge is identically conserved, the topological charges
these two generated or annihilated line defects must be
posite, i.e.,b1h11b2h250, which shows the generatio
and annihilation of a line defect and antidefect pair. This c
explain why a pair of defects with winding numbersW and
2W is equivalent to a nonsingular configuration, and w
the defects can annihilate one another within a bounded
gion without the need for any rearrangement of the ord
parameter field at large distance@1#. One of the results of Eq
~43!, that the velocity of line defects is infinite when they a
being annihilated, agrees with that obtained by Bray@12#,
who has a scaling argument associated with defect final
nihilation which leads to a large velocity tail, and Mazen

FIG. 9. ~a! One line defect splits into three line defects at t
bifurcation point in (311)-dimensional space-time.~b! Three line
defects merge into one line defect at the bifurcation point.
d
l

of
p-

n

e-
r-

n-

@13#, who claimed that there is a large velocity tail in the lin
defect velocity distribution corresponding to the annihilati
of the defect. From Eq.~43!, we also obtain the result tha
the velocity of the line defects is infinite when they are bei
generated, which is gained only from the topology of t
two-component vector order parameter.

D. Collision, splitting, and mergence of line defects

Let us turn to the other case, in which the restrictions
Eqs.~31! are

D j S f

x D50, j 50,1,2. ~44!

These three restrictive conditions will lead to the importa
fact that the functional relationship betweent andx or t and
y is not unique in the neighborhood of (xW* ,t* ). In our topo-
logical current theory, this fact is easily seen from

dx

dt
5

D1~f/x!

D0~f/x!
U

(xW* ,t* )

,
dy

dt
5

D2~f/x!

D0~f/x!
U

(xW* ,t* )

~45!

which under Eq.~44! directly shows that the direction of th
integral curve of Eqs.~45! is indefinite at (xW* ,t* ). Therefore,
the very point (xW* ,t* ) is called a bifurcation point of the
two-component vector order parameterfW (x,y,t).

According to thef-mapping topological current theory
the Taylor expansion of the solution of Eqs.~31! in the
neighborhood of the bifurcation point (xW* ,t* ) can be gener-
ally expressed as@10#

a~x2x* !212b~x2x* !~ t2t* !1g~ t2t* !21•••50,
~46!

which leads to

aS dx

dt D
2

12b
dx

dt
1g50 ~47!

and

gS dt

dxD
2

12b
dt

dx
1a50, ~48!

where a, b, and g are constants determined by the tw
component vector order parameterfW . The solutions of Eqs.
~47! or ~48! give different motion directions of zero point
on the cross section at the bifurcation point. There are f
possible cases, which will show the physical meanings of
bifurcation points.

Case (1) (aÞ0): For D54(b22ag).0, from Eq. ~47!
we obtain two different motion directions of the zero poi
on the cross section,

dx

dt U
1,2

5
2b6Ab22ag

a
, ~49!

which is shown in Fig. 7, where two worldlines of two ze
points intersect with different directions at the bifurcatio
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point on the cross section. This shows that two line defe
meet and then depart at the bifurcation point.

Case (2) (aÞ0): For D54(b22ag)50, from Eq. ~47!
we obtain only one motion direction of the zero point on t
cross section,

dx

dt U
1,2

52
b

a
. ~50!

which includes three important cases.~a! Two worldlines of
zero points tangentially contact, i.e., two line defects coll
at the bifurcation point@see Fig. 8~a!#. ~b! Two worldlines of
zero points merge into one worldline, i.e., two line defe
merge into one line defect at the bifurcation point@see Fig.
8~b!#. ~c! One worldline resolves into two worldlines, i.e
one line defect splits into two line defects at the bifurcati
point @see Fig. 8~c!#. Now it is clear that a pair of defects ca
be transformed into a single defect with a total net wind
number, without requiring surgery to extend beyond the
terior of any contour surrounding the pair, considered
Mermin @1#.

Case (3) (a50,gÞ0): For D54(b22ag)Þ0, from Eq.
~48!, we have

dt

dxU
1,2

5
2b6Ab22ag

g
50, 2

2b

g
. ~51!

There are two important cases:~a! One worldline of resolves
into three worldlines, i.e., one line defect splits into three l
defects at the bifurcation point@see Fig. 9~a!#. ~b! Three
worldlines merge into one worldline, i.e., three line defe
merge into one line defect at the bifurcation point@see Fig.
9~b!#.

Case (4) (a5g50): Equations~47! and~48!, respectively,
give

dx

dt
50,

dt

dx
50. ~52!

This case shows that two worldlines intersect normally at
bifurcation point, which is similar to case~3!: ~a! Three line
defects merge into one line defect at the bifurcation point.~b!
One line defect splits into three line defects at the bifurcat
point.

Now the evolution of the line defects is investigated
detail: at the limit points of the two-component vector ord
parameter, line defects are generated or annihilated; a
ts

e

s

-
y

s

e

n

r
he

bifurcation points of the two-component vector order para
eter, line defects collide, split, or merge. The identical co
versation of the topological charge shows that the sum of
topological charge of the final line defect~s! must be equal to
that of the initial line defect~s! at the bifurcation point. Fur-
thermore, from above studies, we see that the genera
annihilation, collision, splitting, and merging of line defec
are not gradual changes, but start at a critical value of ar
ments, i.e., a sudden change.

IV. CONCLUSIONS

First, we give the spatial structure of line defects in thre
dimensional space. The line densities of line defects~13! and
~16! are obtained directly from the definition of topologic
charges of line defects, which is more general than usu
considered. WhenDW (f/x)50, the intersection, splitting, and
merging of line defects in three-dimensional space are inv
tigated in detail by making using of thef-mapping topologi-
cal current theory. Second, the evolution of line defects
(311)-dimensional space-time is studied. There exist c
cial cases of branch processes in the evolution of line def
when the JacobianD0(f/x)50, i.e.,h l is indefinite: At one
of the limit points of the vector order parameter, a pair
line defects with opposite topological charge can be ann
lated or generated. At one of the bifurcation points of t
vector order parameter, a line defect with topological cha
W may split into several line defects~total topological
charges isW); conversely, several line defects~total topo-
logical charges isW) can merge into line defect with a to
pological chargeW. Also, at one of the bifurcation points o
the vector order parameter, two line defects meet and t
depart. These show that line defects are unstable at t
branch points of the vector order parameter. From the to
logical properties of the vector order parameter, we obtai
that the velocity of the line defects is infinite when they a
being annihilated or generated, which agrees with what w
obtained by Bray@12# and Mazenko@13#. Finally, we would
like to point out that all the results in this paper are obtain
from only the viewpoint of topology, without using any pa
ticular models or hypotheses.
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