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Line defects of a two-component vector order parameter
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The line density of line defects in terms of a two-component vector order parameter are obtained from the
definition of topological charges of line defects. The spatial structure and bifurcation of line defects in three-
dimensional space are also studied from the topological properties of the two-component vector order param-
eter. The branch conditions for generating, annihilating, colliding, splitting, and merging of line defects are
obtained according to the properties of the two-component vector order parameter itself. It is found that the
velocities of line defects are infinite when they are being annihilated or generated, which is obtained only from
the topological properties of the two-component vector order parani&E063-651X99)01709-2

PACS numbgs): 05.70.Ln, 11.27d, 41.20.Jb, 47.32.Cc

[. INTRODUCTION rectly from the definition of topological charges, and dis-
cussed what will happen wheéd(¢/x) =0, i.e., 5, is indefi-
Topological defects play an important role in understand-ite.
ing a variety of problems in physi¢4,2]. In particular, there For the topological line density of line defects for the case
has been progress in the study of defects associated with ax=d—1,

n-component vector order parameter fiéﬁdﬂt) [3-5]. For arl

the scalar casey=1, the defects are domain walls which are PR a o> > )

points for the spatial dimensionality=1, lines ford=2, P “'”‘% f dSE S =ra(s1));

planes ford= 3, etc. More generally, fan=d, one has point

defects; fom=d—1, one generates line defects. In additionin the similar way of obtaining Eq.1), the authors of Refs.
to their importance in condensed matter, these systems af6,9] gave

also relevant to problems in cosmological structure forma-

tion. In studying these problems, questions arise as to how pi(F,t)z 5($)Di(¢/x), )
one can define quantities like the densities of defect and an
associated defect velocity field. where
It is interesting to consider an appropriate form for defect _ o
densities when expressed in terms of the vector order param- D'(p/x)=¢€"1'2" "nail¢>1ai2¢2- . .ain¢”.
eter fieldé(r,t). This has been carried out by Halpef#],
and exploited by Liu and MazenK@]: In the casen=d, the In this paper, we will investigate the line density of line
first ingredient is the rather obvious result defects of a two-dimensional vector order parameter, and

give a complete topological analysis of the line density. This

paper is organized as follows: In Sec. Il, from the definition
; of the topological charge of line defect, the line density of
line defects in terms of the two-component vector order pa-
rameter are given by means of tlgemapping topological

Where. the second factor o_n the rlght-hanq §|dee|s Ju_St th‘Ew'turrent theonf10,8]. The topological bifurcation of line de-
Jacobian of the transformation from the variapléor. This  fects in three-dimensional space is also given. In Sec. Il

2 5(F—Fa<t>>=6<$<F,t>>D(§)

is combined with the less obvious result from the topological properties of the two-component vector
order parameter, the conditions for generating, annihilating,
7.=SgND(S/X)|7 colliding, splitting, and merging line defects are obtained,
and several crucial cases of branch process are discussed in
to give detail. We present our concluding remarks in Sec. IV.

> > o - II. SPATIAL STRUCTURE OF LINE DEFECTS
p(F0)=2 7,80 —r(1))=8()D(S/x). (1)

A. Line density of line defects

In recent work[8], we showed that this analysis of Ed) is _Let us study a two-component vector order parameter

incomplete, and obtained the densities of point defects di¢(r.t) at a fixed time, which is denoted g4r), and take a
cross section normal to tteaxis with coordinates®=x and

x2=vy; the intersection points between the line defects and

* Author to whom correspondence should be addressed. Electronf€ Cross section are just thee zero points of the two-
address: itpA@Izu.edu.cn component vector order parametgri.e.,
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1 (x,y)=0, p'=px, p’=py, p*=p,.
2(x,y)=0. (3)  Becauses'* is a fully antisymmetric tensor, it is easy to see
that the divergence of the line density of the line defects is
If the Jacobian determinant Zero,
D(¢/x) =5 eand;p?o®#0, k=12, (4 V.p=a,p'=0, (12)
the solutions of Eqs(3) are generally expressed as which is the reason that line defects occur on a set of one-
dimensional curves that may be either closed loops or infinite
X=X, y=y, 1=12,...N, (5) curves. Using the same methods in as R&fl], one can
obtain that

which represenN zero points>?,=(x| ,Y1) on this cross sec-

tion. €/ and e, are fully antisymmetric tensors, and the P )

summation is over repeated indices in E4j. p'=0 (¢)D'(;)' (13
The topological charge of thigh line defect{or the gen-

eralized winding numbelV, of <Z at one of zero points Wwhere

(x,,y)) ] is defined by the Gauss map 43,— St [10], .

Di( d’) = Ee”’keabaj G2 P®,  1,j,k=1,2,3.

1 x

2m ) 53,

W, N*(expn®dn®), n?=¢[¢l, (6
Here one can see that the line density of line defects in terms
wheren* is the pullback of the Gauss mapandd3, is the ~ ©Of the two-component vector order parame(#g) is ob-
boundary of a neighborhod of % . SAS =& for S is talne_d directly from_thg definition of topolog!cal charg_e of
, ' s i eme m the line defectthe winding number of zero pointswhich is
the neighborhood of another arbitrary zero poipt In to-  yseful because it avoids the problem of having to specify the

pology this means that, when the poinicoversds;, once, position of line defects explicitly, and is more general than
the unit vectom will cover S*, or ¢ covers the correspond- usually considered. From Eq13) we see thap does not

ing regionW, times, which is a topological invariant. Using yanish only at the zero points af in three-dimensional
the Stokes’ theorem in the exterior differential form, one cangpace, i.e.,

deduce that

L $'(xy,2)=0, ¢*(x,y,2)=0. (14)
W|=%leeabejk&jnao7knbdzx. (7) When

So it is clear that the topological charge density of line de- 5(?) - Dl(f D2 f) Ds(f £0,

fects (or the topological charges densitiem the cross sec- X X X X

tion is just )

the solutions of Eqs(14) are
1 .
pzzzeabejk&jnaé’knb, j k=12, (8) x=x(s), y=y(s), z=z(s), 1=12,...N

(15

Similarly, we may obtain the topological charge density line\yich representN line defectsL,(I1=1,2, ... N) where
defects on a cross section normal to ghaxis, &(r)=0 in three-dimensional space. The direction of ktre
line defect is determined b (4/x) on L, [11].

In the theory of thes function of é(r), one can prove that
[11]
and the topological charge density of line defects on a cross
section normal to the& axis:

1 |
py:ZEabGJkO"jnaﬁknb, ],k:1,3, (9)

N -
N dr| N IO
p=> ﬂlmf dsd—dnb\g(r—r,), (16)
1 . =1 L S
Px=5—€ape“dn3n®,  j k=23 (10 L _ .
2@ where the positive integes, is called the Hopf index, and
) ] ) . 7 ==*1 is the Brouwer degree of mag— ¢ [11]. One can
The line density of line defects normal to one plane give thginq 5 relation between the Hopf indes, the Brouwer de-
topological charge density of line defects on the plé@k gree 7, and the winding numbew, : W, =g, 7, [8]. LetS

and one can construttie line density of line defecis three- e a4 arbitrary surface, and suppose Mdine defects pass
dimensional space according to E¢8), (9) and (10): through it. According to Eq(13), one can prove that

p'=3€Xepan?on®, i,j,k=1,23, (11 L
Lp.dazglﬁm., (17)

where
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which confirms thaﬁ represents the line density of line de-
fects in space.
Here we see that resuf2) obtained by Halperin and Ma-

zenko and co-workers is not complete. They only considered
the caseB,=1, and did not discuss what will happen when

[3(qb/x):0, i.e., » is indefinite, which we will discuss in
Sec. I B.

B. Spatial bifurcation of line defects
Solution (15) of Egs.(14) is based on the condition that

the Jacobianﬁ(qb/x);&o. When the condition fails, the
above result$15) will change in some way. It is interesting

to discuss what will happen, and what the correspondence in

physics will be when

(18

at some pointsf,* alongL,. This restrictive condition will
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FIG. 1. Bifurcation solution for Eq(22): two line defects inter-

lead to an important fact that the functional relationship be-sect at the bifurcation point in three-dimensional space.

tweenz andx, or zandy, is not unique in the neighborhood
of r¥ . This fact is easily seen from

¢ ¢
dx_ Dl(? dy Dz(;) 19
2= ()| ' Az [
Dg(?) . D?’(?) )

which under Eq(18) directly shows that the direction of the
integral curve of Eq(19) is indefinite atﬂ* . Therefore, the
very point ﬂ* is called a bifurcation point of the two-

which is shown in Fig. 1, where two zero lines intersect with
different directions at?* . This shows that two line defects
intersect at the bifurcation point.

Case (2) (A0): For A=4(B2—AC)=0, from Eq.(20),
we obtain only one direction of the line defects in three-

dimensional space,
dx B

dz 12 A’

(23

which includes three important cases according to Fig. 2.

dimensional vector order parameter in three-dimensiondfirst, two zero lines tangentially contact, i.e., two line de-

space.

According to theg-mapping topological current theory,
the Taylor expansion of the solution of Egd4) in the
neighborhood of the bifurcation poinﬁ" can be generally
expressed afl0]

A(X—X")2+2B(x—x)(z—27)+C(z— 27" )?+-- - =0,
which leads to
A dx)? ZBdX C=0 20
az) TBG e 20
and
C dz)® ZBdZ A=0 21
ax] T2BgtA=0. (21

The solutions of Eq920) or (21) give different directions of
the branch curves$zero lines of the two-component vector
order parameter, i.e., line defectst the bifurcation point.
There are four important cases.

Case (1) (A-0): For A=4(B%2—AC)>0, from Eq.(20),

fects tangentially intersect at the bifurcation pdisee Fig.
2(a)]. Second, two zero lines merge into one zero line, i.e.,
two line defects merge into one line defect at the bifurcation
point[see Fig. 2b)]. Finally, one zero line resolves into two,
i.e., one line defect splits into two at the bifurcation point
[see Fig. Zo)].

Case (3) (A=0,C+0): For A=4(B?>—AC)+0, from Eq.
(21), we have

dz B
dx 12

—B=* BZ—AC_O
———— =0,

2B

- (24)
As shown in Fig. 3, there are two important cas@s:One
zero line resolves into three, i.e., one line defect splits into
three line defects at the bifurcation po[isee Fig. 8a)]. (b)
Three zero lines merge into one zero line, i.e., three line
defects merge into one at the bifurcation pojsee Fig.
3(0)].

Case (4) (A=C=0): Equations(20) and (21), respec-
tively, give

(25

we obtain two different directions of the line defects in three-

dimensional space,
dx
dz 12

—B=*+B2—AC

e @2

This case is obvious as in Fig. 4, which is similar to case 3.

The above solutions reveal the spatial bifurcation struc-
ture of line defects in three-dimensional space. In addition to
the intersection of line defects, i.e., two line defects intersect
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FIG. 3. Two important cases of E¢R4). () One line defects
splits into three line defects at the bifurcation point in three-
dimensional spacéb) Three line defects merge into one line defect
at the bifurcation point.

2

«

£

j at the bifurcation poinfsee Figs. 1 and(8)], splitting and

8 merging of line defects are also included. When a multi-
x charged line defect passes through the bifurcation point in

three-dimensional space, it may split into several line defects
along different branch curvésee Figs. &), 3(a), and 4b)];
moreover, several line defects can merge into one line defect
at the bifurcation poinfsee Figs. t), 3(b), and 4a)]. For

the divergence of the line density of line defects to be zero
[Eqg.(12)], the sum of the topological charges of the final line
defects) must be equal to that of the initial line defejtat

© Z Coordinate the bifurcation point, i.e.,

*

z

FIG. 2. Bifurcation solutions for Eq23): line defects have the
same direction of tangent when they intersect in three-dimensional E Bi.m.= 2 B (26)
space.(a) Two line defects tangentially contact at the bifurcation f R P
point. (b) Two line defects merge into one line defect at the bifur-
cation point.(c) One line defect splits into two line defects at the
bifurcation point. for fixed I.
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< FIG. 5. Sis one cross section normal to thexis. X(t) is the
intersection line between the evolution surface of a line defect and
the cross sectiof, i.e., the movement curve of the line defect on
the cross sectiofs.
Following the ¢-mapping topological current theory, it can
be proved that
z* - ¢
v_ g2 s
(a) Z Coordinate KAY=4 (¢)DW( x|
. where
: D#"(pIX) =3 €7 €ap0y 20 .
Considering thai*" is a fully antisymmetric tensor, we
g : can prove that
g .
B . N
o d,Kr'=0;
8 .....................
< that is,
: ap' + 0K =0, (27)
: which is just the continuity equation satisfied py[9].
B. Motion of line defects on a cross section

(b)

z* When we investigate the movement of line defects, there
Z Coordinate exist evolution surfaces formed by the movements of the line
defects in (3+1)-dimensional space-time. For simplicity, let

FIG. 4. (a) Three line defects merge into one at the bifurcation us take an arbitrary cross section normal to zhexis, i.e.,
point. (b) One line defect splits into three line defects at the bifur- (24 1)-dimensional space-time with coordinate’s=x, x2

cation point.

IIl. EVOLUTION OF LINE DEFECTS

=y, andx®=t. The intersection lines between the evolution
surfaces and the cross section are just motion curves of line
defects on the cross secti¢see Fig. . One thing to point

In Sec. II, we did not consider the motion of line defects, Ut is that if one takes the cross sections all along the axis,

and only discussed the space structure of line defects i) motion properties of the line defects will be given com-

three-dimensional space. In this section, we will investigaté/etely.

the evolution of a line defect in (81)-dimensional space-  From the continuity equation satisfied py[Eq. (27)], we
time with coordinatex*=x, x>=y, x3=z, andx®=t. can give the continuity equation of the line densities of line
defects on this cross section:
A. Continuity equation of line density of line defects dppt ajKi =0, j=1,2, (29)
From Eq.(11), we construct a topological tensor current
of the two-component vector order parameter where
Qv 1 MVNC a b _K03_ 52 7 DO d) 29
Kiv=o— " eqpihn?d,n°,  pu,v=0,1,2,3, p=K™=56%(4)D7| + (29
where and
A o N AR
p'=K0'=E60”keab&jnaﬂknb. Ki=KI3=§%(¢)D! < =12 (30)
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t* t*
(a) t Coordinate t Coordinate

FIG. 7. Two line defects collide with different directions of
motion at the bifurcation point in (8 1)-dimensional space-time.

N
pz(x,y,t>=|§1 By 82(X—X)(1)). (33)

Following our theory, we can also obtain the velocity of the
Ith zero point on the cross section,

X Coordinate

. dx_ D(¢/x)

1At g | D(/x)=(DX($/x),DX($/x)),

(34)

from which one can identify the zero-point velocity field on
the cross section,

t*
(b) t Coordinate i 5( H1%)
(X, Yy,t)= ——— (35

FIG. 6. (a) The origin of line defects, i.e., two line defects are DO( BIX) '

generated at the limit pointb) Two line defects are annihilated at

the limit point. . N . —
P where it is assumed that the velocity field is used inside

expressions multiplied by the zero points, locating the
function. The expressions given by E§5) for the velocity
field of the zero points are useful because they avoid the
é)roblem of having to specify the positions of the zero points
explicitly. The positions are implicitly determined by the ze-

ros of the two-component vector order parame}eon the
cross section. So the location and the velocity oflthezero
point are determined by tHéh zero>2|(t) and the vector field

which determine the positions of line defects. If the Jacobiar?(X.Y.t) onx(t), respectively.
determinanD®($/x) #0, the solutions of Eqs(31) are ex- The current densities of the line defects on the cross sec-

pressed as j[ion can be Wri'Ften in the same form as the current densities
in hydrodynamics:

where the JacobianD*(¢/x)=3e*" eqpd, 30, d° (u
=0,1,2,3).

From Eg. (29 the line densities of line defects on the
cross section do not vanish only at the zero points of th

vector order parameteﬁ;(x,y,t), ie.,

dL(xy,1)=0, ¢%(x,y,t)=0, (3D

x=x/(t), y=yl(t), 1=12,...N, (32 N :
4 - . dx
| | - I=2 BmPx-x()g, i=12. (36
which represent the motion curves of tNezero pointx,(t) =1 dt
on the cross section, and which show them moving in (2
+1)-dimensional space-time. From Eqgs.(30), (33), and(34), the current densities can be
According to Eq.(16), we obtain that written as the concise forms
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Ji:Ki:52(¢;)Di(§

According to Eq{(28), the topological charges of line defects
on the cross section are conserved,

p, - -
W'FV-\]—O, (38

which is only the topological property of the vector order
parameter. This is the true reason that the singuldrityo-
logical defect with a winding numbeMW##0 cannot be re-
moved without tampering with the order parameter at arbi-
trarily great distances from the singular point, and that
singular configurations with different winding numbers can-
not be transformed into one another by local surgery, as
pointed out by Mermin1].

C. Generation and annihilation of line defects

Solutions(32) of Egs.(31) are based on the condition that
the JacobiarD®(¢/x)#0. It is interesting to discuss what
will happen and what the correspondence in physics will be
when this condition fails. Whe®(4/x)=0, i.e., 5 is in-
definite, it is shown that there exist several crucial cases of
branch process. There are two kinds of branch points,
namely, limit points and bifurcation points. Each of them
corresponds to different cases of branch process.

First, we study the case when the zeros of the two-

component vector order parameté(x,y,t) include some
limit points. The limit points are determined by E¢31) and

D°<f)=o, D?! f);eo (39
X X
or
Do(f):o, Dz(f) #0. (40)
X X

For simplicity, we only consider Eq§39), and denote one of

the limit points as X* ,t*). Taking account of Eqg39) and
using the implicit function theorem, we have a unique solu-
tion of Egs. (31) in the neighborhood of the limit point

(X*,t*%),
t=t(x), y=y(x), (41)

with t* =t(x*) andy* =y(x*). From Eqgs(39), it is easy to
see

dt
dx

dx

m =00, (42)

(x*,t%)

=0, 1i.e.,
(x* t%)

Thus, the Taylor expansion of soluti¢#l) in the neighbor-

FIG. 8. Line defects have the same direction of motion in (3hood of the limit point &*,t*) is

+1)-dimensional space-timga) Two line defects collide at the
bifurcation point.(b) Two line defects merge into one line defect at
the bifurcation point(c) One line defect splits into two line defects

at the bifurcation point.

d?t
*

—tr=5 Y (Xx—x*)2. (43

(x* %)
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[13], who claimed that there is a large velocity tail in the line
defect velocity distribution corresponding to the annihilation
of the defect. From Eq43), we also obtain the result that

the velocity of the line defects is infinite when they are being
generated, which is gained only from the topology of the

% two-component vector order parameter.
c
g D. Collision, splitting, and mergence of line defects
g Let us turn to the other case, in which the restrictions of
Egs.(31) are
(@ .
D! X =0, j=0,1,2. (44

These three restrictive conditions will lead to the important
fact that the functional relationship betwetandx or t and

t y is not unique in the neighborhood of(,t*). In our topo-

(a) t Coordinate logical current theory, this fact is easily seen from
dx  D*(¢/x) dy D2(¢/x) 45

At DG | ey AU DAGN)] o ey

which under Eq(44) directly shows that the direction of the
integral curve of Eqg(45) is indefinite at &* ,t*). Therefore,
the very point &*,t*) is called a bifurcation point of the

two-component vector order parametafx,y,t).
According to the¢-mapping topological current theory,
the Taylor expansion of the solution of Eq&1) in the

neighborhood of the bifurcation poinﬁ’(,t*) can be gener-
ally expressed agl0]

X Coordinate

a(X=x*) 2+ 2B(x=x*) (1= 1*) + Y(1=t%)%+. - =0

(46)
t* which leads to
(b) t Coordinate
dx\? dx
FIG. 9. (a) One line defect splits into three line defects at the X\ gt +2ﬁa+ y=0 (47)
bifurcation point in (3+ 1)-dimensional space-timéb) Three line
defects merge into one line defect at the bifurcation point. and
From Eg.(43) we can obtain the branch solutions of zero dt)2 dt
points at the limit point. 1dt/(dx)?| x« 1+y>0, we have the y(d—x +2B 4 +a=0, (48)

branch solutions for=t* [Fig. 6(a)]; otherwise, we have the
branch solutions fot<t* [Fig. 6(b)]. The former is related

to the generation of the line defects, and the latter is relate - )
to the annihilation of the line defects. Since the topologicalcoMPonent vector order parametgr The solutions of Egs.

charge is identically conserved, the topological charges of47) O (48) give different motion directions of zero points
these two generated or annihilated line defects must be of2" the cross section at the bifurcation point. There are four
posite, i.e., 8,71+ B,7,=0, which shows the generation possible cases, which will show the physical meanings of the
and annihilation of a line defect and antidefect pair. This carPifurcation points. o

explain why a pair of defects with winding numbafgand Case (1) &+0): For A=4(8"—ay)>0, from Eq.(47)
—W is equivalent to a nonsingular configuration, and why& obtain two dlfferent motion directions of the zero point
the defects can annihilate one another within a bounded ré" the cross section,

ghere a, B, and y are constants determined by the two-

gion without the need for any rearrangement of the order- ———
parameter field at large distanicd. One of the results of Eq. d_x __ BN —ay (49)
(43), that the velocity of line defects is infinite when they are dt 12 a ’

being annihilated, agrees with that obtained by Bfag],
who has a scaling argument associated with defect final arwhich is shown in Fig. 7, where two worldlines of two zero
nihilation which leads to a large velocity tail, and Mazenko points intersect with different directions at the bifurcation
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point on the cross section. This shows that two line defectsifurcation points of the two-component vector order param-

meet and then depart at the bifurcation point. eter, line defects collide, split, or merge. The identical con-
Case (2) @+0): For A=4(B?—ay)=0, from Eq.(47)  versation of the topological charge shows that the sum of the

we obtain only one motion direction of the zero point on thetopological charge of the final line deféstmust be equal to

cross section, that of the initial line defe¢s) at the bifurcation point. Fur-
thermore, from above studies, we see that the generation,
dx B annihilation, collision, splitting, and merging of line defects
—| =——. (50 "
dt 10 a are not gradual changes, but start at a critical value of argu-

ments, i.e., a sudden change.
which includes three important caséa). Two worldlines of
zero points tangentially contact, i.e., two line defects collide IV. CONCLUSIONS
at the bifurcation poinfsee Fig. 8)]. (b) Two worldlines of ) ) ) . .
zero points merge into one worldline, i.e., two line defects First, we give the spatial structure of line defects in three-
merge into one line defect at the bifurcation pdisee Fig. dimensional space. The line densities of line defet® and
8(b)]. (c) One worldline resolves into two worldlines, i.e., (16) are obtained directly from the definition of topological
one line defect splits into two line defects at the bifurcationcharges of line defects, which is more general than usually
point[see Fig. &)]. Now it is clear that a pair of defects can considered. Wheb (¢/x) =0, the intersection, splitting, and
be transformed into a single defect with a total net windingmerging of line defects in three-dimensional space are inves-
number, without requiring surgery to extend beyond the intigated in detail by making using of thg-mapping topologi-
terior of any contour surrounding the pair, considered bycal current theory. Second, the evolution of line defects in

Mermin [1]. (3+1)-dimensional space-time is studied. There exist cru-
Case (3) ¢=0,y+0): For A=4(B°—ay)+0, from Eq.  cial cases of branch processes in the evolution of line defects
(48), we have when the JacobiaB?(4/x)=0, i.e., 5, is indefinite: At one
of the limit points of the vector order parameter, a pair of
dt| —B=Vp°— ¥ _, 2B ) line defects with opposite topological charge can be annihi-
dx| y Ty (51 |ated or generated. At one of the bifurcation points of the

vector order parameter, a line defect with topological charge
There are two important casd€s) One worldline of resolves W may split into several line defectéotal topological
into three worldlines, i.e., one line defect splits into three linecharges isW); conversely, several line defecftal topo-
defects at the bifurcation poirjsee Fig. 9a)]. (b) Three logical charges i&V) can merge into line defect with a to-
worldlines merge into one worldline, i.e., three line defectspological charga/. Also, at one of the bifurcation points of
merge into one line defect at the bifurcation pdisée Fig. the vector order parameter, two line defects meet and then

9(b)]. depart. These show that line defects are unstable at these
Case (4) &4=y=0): Equationg47) and(48), respectively, branch points of the vector order parameter. From the topo-
give logical properties of the vector order parameter, we obtained
that the velocity of the line defects is infinite when they are
d_X ~0 ﬂ_o (52) being annihilated or generated, which agrees with what was
dt 7 dx obtained by Bray12] and Mazenkd13]. Finally, we would

like to point out that all the results in this paper are obtained

This case shows that two worldlines intersect normally at thérom only the viewpoint of topology, without using any par-
bifurcation point, which is similar to cag@): (a) Three line  ticular models or hypotheses.
defects merge into one line defect at the bifurcation p@bjt.
One line defect splits into three line defects at the bifurcation
point.

Now the evolution of the line defects is investigated in  This work was supported by the National Natural Science
detail: at the limit points of the two-component vector orderFoundation and the Doctor Education Fund of the Educa-
parameter, line defects are generated or annihilated; at th®nal Committe of the People’s Republic of China.
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